Методика оценки содержания битума по данным исследований керна кембрийских отложений одного из месторождений Восточной Сибири

Загидуллин М.И., Потапов А.Г., Гарипова К.Ф. ООО «Тюменский нефтяной научный центр», Тюмень, Россия mizagidullin2@tnnc.rosneft.ru

Аннотация

Лабораторные исследования керна из карбонатных пластов Восточной Сибири имеют свои трудности. К ним относятся высокая минерализация пластовой воды, ангидритизация, наличие тяжелых углеводородов и битумов в породеколлекторе. В настоящее время отсутствуют достоверные критерии для выявления битумов при интерпретации стандартных методов ГИС. Большой практический интерес представляет использование метода ядерно-магнитного резонанса (ЯМР) для описания характеристик флюида, насыщающего коллекторы с тяжелой нефтью. Комплексирование петрофизических (ЯМР, определение сохраненной водонасыщенности экстракционно-дистилляционным методом на аппарате Дина-Старка) и пиролитических методов позволяет охарактеризовать битуминозные образцы, а также определить граничные отсечки времен T_2 , отделяющие битумы, битумы и тяжелые фракции нефти от свободного порового пространства. Полученные граничные отсечки времени T_2 применены на кривых ЯМК. Получено неплохое сопоставление пористости, приходящейся на свободное поровое пространство, а также пористости, приходящейся на битумы и тяжелые фракции нефти, по керновым данным и по данным ЯМК. Дополнительно в статье описаны эксперименты по определению водородного индекса (ВИ) битумов и предложено значение водородного индекса, рекомендованного для практических задач интерпретации ГИС.

Материалы и методы

В лаборатории получить информацию о битуминозности возможно методами петрографии (визуальное изучение шлифов), геохимии (пиролитические исследования) и петрофизики (газоволюметрия, жидкостенасыщение, ЯМР), но данные методы не лишены недостатков. Разработанная методика на основе комплексного анализа лабораторных исследований дает возможность оценить объем пор, занятый битумом, а также определить граничные отсечки, позволяющие оценить долю пор, занятую тем или иным флюидом, что далее может быть использовано при интерпретации ядерно-магнитного каротажа (ЯМК).

Ключевые слова

керн, битум, общая пористость, ЯМР, граничные отсечки времени $\mathrm{T_{2^{\prime}}}$ водородный индекс

Для цитирования

Загидуллин М.И., Потапов А.Г., Гарипова К.Ф. Методика оценки содержания битума по данным исследований керна кембрийских отложений одного из месторождений Восточной Сибири // Экспозиция Нефть Газ. 2023. № 6. С. 23–30. DOI: 10.24412/2076-6785-2023-6-23-30

Поступила в редакцию: 31.08.2023

GEOLOGY

UDK 550.822.3 | Original Paper

Methodology for estimation of bitumen content based on the data of core studies of cambrian sediments of one of the fields in Eastern Siberia

Zagidullin M.I., Potapov A.G., Garipova K.F.

"Tyumen petroleum research center" LLC, Tyumen, Russia mizagidullin2@tnnc.rosneft.ru

Abstract

Laboratory studies of cores from carbonate formations in Eastern Siberia have their own difficulties. These include high mineralization of formation water, anhydritization, presence of heavy hydrocarbons and bitumen in the reservoir rock. At present, there are no reliable criteria for identifying bitumen when interpreting standard methods of geophysical well studies. Of great practical interest is the use of nuclear magnetic resonance (NMR) to describe the characteristics of fluid saturating reservoirs with heavy oil. The combination of petrophysical (NMR, determination of preserved water saturation by extraction-distillation method on Dina-Stark apparatus) and pyrolytic methods allows to characterize bituminous samples, as well as to determine boundary cutoffs of T_2 times separating bitumen, bituminous and heavy oil fractions from free pore space. The obtained T_2 time boundary cutoffs are applied to the nuclear magnetic logging curves. A good comparison of porosity attributable to free pore space and porosity attributable to bitumens and heavy oil fractions from core data and NMR logging data is obtained. In addition, the article describes experiments to determine the hydrogen index of bitumen and proposes a value of hydrogen index recommended for practical tasks of interpretation methods of geophysical well studies.

Materials and methods

In the laboratory it is possible to obtain information about bituminosity by methods of petrography (visual study of slits), geochemistry (pyrolytic studies) and petrophysics (gas-volumetry, liquid saturation, NMR), but these methods are not without disadvantages. The developed method based on a comprehensive analysis of laboratory studies allows us to estimate the volume of pores occupied by bitumen, as well as to determine the boundary cutoffs that allow us to estimate the fraction of pores occupied by a particular fluid, which can be further used in the interpretation of nuclear magnetic logging.

Keywords

core, bitumen, total porosity, NMR, T_{2} time boundary cutoffs, hydrogen index

For citation

Zagidullin M.I., Potapov A.G., Garipova K.F. Methodology for estimation of bitumen content based on the data of core studies of cambrian sediments of one of the fields in Eastern Siberia. Exposition Oil Gas, 2023, issue 6, P. 23–30. (In Russ). DOI: 10.24412/2076-6785-2023-6-23-30

Received: 31.08.2023

В связи со значительным снижением за последние десятилетия в структуре мировых запасов доли традиционной нефти все более существенную долю занимают трудноизвлекаемые запасы, к которым относятся тяжелая нефть и природные битумы, и их запасы в мире более чем в два раза превышают запасы традиционных углеводородов [1].

Битум представляет собой смесь углеводородов и их азотистых, кислородистых, сернистых и металлоорганических производных с высоким содержанием смолисто-асфальтеновых веществ (САВ), образующихся в результате химического и биохимического окисления нефти [2]. Основной химический состав битума представлен углеродом (70–87 %), во дородом (8–12 %), серой (0,5–7 %), кислородом (0,2–12 %), аотом (0–2 %). Битум характеризуется плотностью или частично растворяется в бензоле, хлороформе, сероуглероде.

Присутствие битумов в поровом пространстве пород может оказывать существенное влияние на их свойства. Точное выявление битуминозных интервалов в разрезе пласта необходимо для эффективной разработки месторождений и получения максимально возможной нефтеотдачи.

В настоящее время отсутствуют достоверные критерии для выявления битумов при интерпретации стандартных методов ГИС. Большой практический интерес представляет использование метода ядерно-магнитного резонанса (ЯМР) для описания характеристик флюида, насышаюшего коллекторы с тяжелой нефтью. Наиболее широко применяемые методики интерпретации данных ЯМР-каротажа основаны на измерении характеристик ядерной магнитной релаксации пород-коллекторов. насышенных различными флюидами. обработке и анализе получаемых спектров распределения времен релаксации и установлении временных отсечек. При этом, используя различные эмпирические и теоретические модели, строят предположения о свойствах пород и насыщающих их флюидов [1, 3].

Получение информации о битуминозности породы возможно в лабораторных условиях методами петрографии (визуальное изучение шлифов), геохимии (пиролитические исследования), петрофизики (газоволюметрия, жидкостенасыщение, ЯМР) [4]. Однако данные методы не лишены недостатков. Так, при изучении шлифов по стандартной технологии получают информацию лишь о небольшом срезе породы, которую невозможно масштабировать на объем стандартного образца, не говоря уже об объеме пласта, а использование петрографической томографии (серия шлифов с одного образца) затратно и трудоемко. По пиролизу получают массовое содержание битумов, которое необходимо пересчитывать на объем, для этого нужно знать плотность битумов, которую определяют с помощью дополнительных экспериментов. В отличие от пиролиза с помощью метода ЯМР исследуют достаточный поровый объем для выполнения петрофизических исследований.

Целью работы является разработка методики оценки содержания битума в поровом пространстве пород коллекторов Восточной Сибири на основе комплексного анализа лабораторных исследований керна. Методика позволяет оценить объем пор, занятый битумом, и оценить его содержание по разрезу на основе комплексирования данных керн-ГИС. В основе методики лежит использование метода ЯМР, по данным которого определяются граничные отсечки, позволяющие оценить долю пор, занятую тем или иным флюидом, что далее может быть использовано при интерпретации ядерно-магнитного каротажа (ЯМК) [5].

Комплексный способ количественного определения содержания битумов, тяжелых подвижных и неподвижных фракций нефти основан на симбиозе геохимических исследований (пиролиз) и петрофизических исследований (газоволюметрия, ЯМР). Способ заключается в определении количества битумов и тяжелых фракций нефти пиролитическим методом, а также расчет свободного порового пространства с использованием данных обшей пористости по ЯМР и водонасышенности (экстракционно-дистилляционный метод). Полученные значения содержания битумов. тяжелых фракций нефти и свободного порового пространства применяют на спектрах ЯМР при сохраненной насышенности и рассчитывают граничные отсечки времени Т₂, отделяющие битумы, битумы и тяжелые фракции нефти от свободного порового пространства.

Для разработки методики оценки содержания битума необходимо рассмотреть петрофизическую модель порового пространства битуминозных пород-коллекторов Восточной Сибири (рис. 1). Согласно модели, порода состоит из минерального скелета, цементирующих минералов, битуминозного органического вещества, тяжелых подвижных и неподвижных фракций нефти и воды. Свободное

Рис. 1. Петрофизическая модель порового пространства битуминозных породколлекторов Восточной Сибири

Fig. 1. Petrophysical model of pore space of bituminous reservoir rocks in Eastern Siberia

поровое пространство может быть образовано при удалении легких фракций нефти и газов в результате подъема керна на поверхность.

Объектом исследования являлся 21 цилиндрический образец с сохраненной насыщенностью пласта Б1 одного из месторождений Восточной Сибири. По визуальному описанию образцы представлены доломитами битумонефтенасыщенными, микрокристаллическими, микротонкокристаллическими, тонкокристаллическими, тонкомикрокристаллическими и известняками доломитистыми, неравномерно нефтенасыщенными, тонкомикрокристаллическими.

Согласно схеме исследований (рис. 2), каждый цилиндрический образец разделен на три части: образец 1 (плашка) отправлен на определение пиролитических параметров при сохраненной насыщенности, образец 2 — на определение петрофизических пара метров, образец 3 (дублер образцов 1 и 2) на определение водонасыщенности экстракционно-дистиляционным методом (ЭДМ).

На цилиндрическом образце 2 с сохраненной насышенностью определялась объемная флюидонасыщенность методом ЯМР. Для удаления легких УВ проводилась щадящая экстракция в хлороформе (несколько суток). После сушки при температуре 105 °С определялись ФЕС по гелию и сигнал ЯМР от образцов в сухом состоянии с сохраненными битумами. Далее образцы донасыщались керосином и определялась общая пористость по ЯМР. Похожие исследования проводились в работе [6]. Для получения сигнала ЯМР только от битумов образцы дробились и высушивались при температуре 105 °С, чтобы, предположительно, удалить воду в закрытых порах. В работе использовали размер фракции дробленой породы от 2 до 3.2 мм. Далее определялись объем твердой фазы и минералогическая плотность с помощью газового порозиметра UltraPore-300 и сигнал ЯМР от высушенных дробленых пород. С помощью метода газоволюметрии определялся объем порового пространства, не занятого битумами, через минералогическую плотность на дробленой породе и объемную плотность на цилиндрическом образце, соотнесенный к объему образца. С помощью метода ЯМР определялся объем порового пространства, занятого битумами, соотнесенный к объему образца. Сумма двух этих величин равняется общей пористости на дробленых породах, обозначенной в схеме исследований оранжевым цветом (рис. 2). Затем проводилась полная экстракция дробленых пород в трех растворителях. Заново определялись объем твердой фазы и минералогическая плотность, а также сигнал ЯМР от высушенных дробленых пород. По полученным данным рассчитан водородный индекс (ВИ) битумов [7]. Принцип расчета ВИ приведен по тексту ниже. Полученные результаты приведены в таблице 1. Распределения Т₂ на каждом этапе исследований на примере одного из образцов приведены на рисунке 3.

Объемная флюидонасыщенность по ЯМР с сохраненной насыщенностью составила 0,8–9,0 % (среднее 3,4 %), общая пористость по ЯМР после донасыщения керосином составила 0,9–16,4 % (среднее 5,9 %), сигнал ЯМР от сухих образцов в ед. пористости составил 0,7–1,8 % (среднее 1,1 %), пористость по газу после щадящей экстракции составила 0,1–16,0 % (среднее 5,6 %), проницаемость по Клинкенбергу составила 0,002– 87,90 мД (среднее 17,11 мД).

Как видно из рисунка 4а, проницаемость по Клинкенбергу и пористость по газу имеют экспоненциальную зависимость с R2 = 0,94. Общая пористость по ЯМР после донасыщения керосином и пористость по газу имеют тесную связь (рис. 46). На рисунке 4в приведено

сопоставление пористости, приходящейся на поровое пространство, освободившееся при подъеме керна на поверхность, с общей пористостью по ЯМР после донасыщения керосином, на рисунке 4г приведено сопоставление объемной флюидонасыщенности по ЯМР с общей пористостью по ЯМР после донасыщения керосином. Пористость, приходящаяся на поровое пространство, освободившееся при подъеме керна на поверхность, рассчитана как разность между общей пористостью по ЯМР после донасыщения керосином и объемной флюидонасыщенностью по ЯМР, определенной на образцах с сохраненной насыщенностью. Видно, что с ростом общей пористости по ЯМР увеличивается объемная флюидонасыщенность по ЯМР и пористость, приходящаяся на поровое пространство, освободившееся при подъеме керна на поверхность.

На рисунке 5 приведены четыре типа спектров Т₂ исследованных образцов с сохраненной насыщенностью. Тип 1 представлен доломитами неравномерно нефтенасыщенными микротонкокристаллическими, тип 2 представлен доломитами неравномерно

East Siberian fields

Рис. 3. Распределения Т₂ на каждом этапе исследований на примере образца № 29555/21

Fig. 3. Distributions of T_2 at each stage of research on the example of sample Nº 29555/21

Рис. 4. Сопоставление проницаемости: а — по Клинкенбергу с пористостью по газу; б — общей пористости по ЯМР после донасыщения керосином с пористостью по газу; в — пористости, приходящейся на поровое пространство, освободившееся при подъеме керна на поверхность, с общей пористостью по ЯМР после донасыщения керосином; г — объемной флюидонасыщенности по ЯМР с общей пористостью по ЯМР после донасыщения керосином Fig. 4. Comparison of permeability: a – by Klinkenberg with gas porosity; 6 – total porosity by NMR after kerosene pre-saturation with gas porosity; 8 – porosity attributable to the pore space vacated during core lifting to the surface with total porosity by NMR after kerosene pre-saturation; г – volumetric fluid saturation by NMR with total porosity by NMR after kerosene pre-saturation

Рис. 5. Типичные спектры T_2 образцов при сохраненной насыщенности Fig. 5. Typical T_2 distributions of samples at preserved saturation

битумонефтенасыщенными тонкомикрокристаллическими, тип 3 представлен доломитами неравномерно битумонефтенасыщенными микрокристаллическими, тип 4 представлен доломитами битумонасыщенными тонкокристаллическими. Спектры представлены двухи трехмодальным распределением. Диапазон времен Т₂ составляет от 0,05 мс до 100 мс (тип 3), до 200 мс (тип 4), до 500 мс (тип 2) и до 1 800 мс (тип 1). Время релаксации пропорционально размеру пор, следовательно, инкрементное распределение пористости по временам релаксации характеризует также и распределение пористости по размерам пор.

На рисунке 6 приведено сопоставление проницаемости по Клинкенбергу с общей пористостью по ЯМР после донасыщения керосином на цилиндрических образцах (ц.о.) и проницаемости по Клинкенбергу с общей пористостью на дробленых породах (д.п.). Как видно из рисунка 6, проницаемость по Клинкенбергу хорошо сопоставляется с результатами определения пористости на цилиндрических образцах и на дробленых породах.

На следующем этапе работы по данным пиролиза определили пористость, приходящуюся на битумы и тяжелые фракции нефти, а также рассчитали свободное поровое пространство с использованием данных общей пористости по ЯМР после донасыщения керосином и водонасыщенности (экстракционно-дистилляционныйметод). Объемыводы (ОВ) и нефти в образцах можно проконтролировать по данным реторты. Для расчета использовали формулы 1–4. Полученные результаты приведены в таблице 2.

$$M_{S2b,S2a,S1} = S_{2b,2a,S1} \times M_{coxp.uac.obp}$$
(1)

(2)

$$V_{S2b,S2a,S1} = \frac{M_{S2b,S2a,S1} \times 10^{-3}}{\rho_{S2b,S2a}}$$

$$Kn_{S2b,S2a,S1} = \frac{V_{S2b,S2a,S1}}{V_{odp.}} \times 100$$
 (3)

$$Kn_{FFI} = Kn_{gMP} - Kn_{S2b} - Kn_{S2a} - -Kn_{gMP} - Kn_{gMP} - Kn_{gMP}$$

Рис. 6. Сопоставление проницаемости по Клинкенбергу:

— — с общей пористостью на дробленых породах

– with total porosity on crushed rocks

где S_{2b} — массовое содержание битуминозного ОВ и тяжелой (неподвижной) нефти, мг/г; S_{2a} — массовое содержание тяжелой (подвижной) нефти, мг/г; S₁ — массовое содержание легкой нефти, мг/г; М сохр. нас. обр масса образца с сохраненной насыщенностью, г; M_{S2b} — количество битуминозного ОВ и тяжелой (неподвижной) нефти в образце, мг; M_{S2a} — количество тяжелой (подвижной) нефти в образце, мг; M_{SI} — количество легкой нефти в образце, мг; V_{S2b} — объем битуминозного ОВ и тяжелой (неподвижной) нефти в образце, см³; V_{S2a} — объем тяжелой (подвижной) нефти в образце, см³; V_{SI} — объем легкой нефти в образце, см³; ρ_{S2b} — плотность биту-минозного ОВ и тяжелой (неподвижной) нефти в образце (получена способом растворения битуминизированной породы в кислоте и равна 1,14 г/см³), г/см³; ρ_{S2a} — плотность тяжелой (подвижной) нефти в образце (использовалась равной 1,14 г/см³), г/см³; $\rho_{SI}-$ плотность легкой нефти в образце (использовалась равной

плотности нефти в поверхностных условиях), г/см³; Kn_{SMP} — общая пористость по ЯМР после донасыщения керосином, %; Kn_{S2b} — пористость, приходящаяся на битумы (S_{2b}), %; Kn_{S2a} — пористость, приходящаяся на тяжелые фракции нефти (S_{2a}), %; $Kn_{Juna-Cmapka}$ — пористость, приходящаяся на сорбированную воду (по результатам Дина-Старка), %; Kn_{SI} — пористость, приходящаяся на легкие фракции нефти (S_1), %; Kn_{FFI} — пористость, приходящаяся на свободное поровое пространство, %.

На рисунке 7 сопоставлены значения различных составляющих пористости: пористости, приходящейся на битумы, тяжелые фракции нефти, битумы и тяжелые фракции нефти, свободное поровое пространство, свободное поровое пространство и легкие фракции нефти с общей пористостью по ЯМР после донасыщения керосином на цилиндрических образцах и общей пористостью на дробленых породах. Наблюдается линейная зависимость для образцов с коэффициентами детерминации

Табл. 1. Результаты определения ФЕС методами ЯМР и газоволюметрии пород пласта. Б1 Tab. 1. Results of filtration capacity properties determination by NMR and gas-volumetric methods for B1 reservoir rocks

	Цили	ндриче	ские о	Дробленые породы						
Лабораторный номер образца	Глубина по ГИС, м	Объемная флюидонасыщенность по ЯМР (при сохраненной насыщенности), %	Общая пористость по ЯМР (после донасыщения керосином), %	Сигнал ЯМР, приведенный к единицам пористости (исследование на обр. в сухом состоянии), %	Кп, приходящийся на поровое пространство, освободившееся при подъеме керна на поверхность, %	Пористость по газу, %	Проницаемость по Клинкенбергу, мД	Kn AMP, %	Кп гелий, %	Кп общ. = Кп ЯМР + Кп гелий, %
35302/21	1 459,24	2,6	4,5	0,9	1,9	4,4	0,01	1,0	5,2	6,2
35306/21	1 471,36	2,1	2,6	1,1	0,5	2,5	-	1,2	3,7	4,9
29555/21	1490,87	1,5	2,0	1,1	0,5	2,1	0,02	1,0	3,1	4,1
29561/21	1497,86	1,4	1,7	1,1	0,3	1,9	0,01	1,1	3,0	4,1
29567/21	1 509,63	4,0	8,1	1,1	4,1	7,8	0,92	1,1	8,3	9,4
29347/21	1 516,24	4,0	5,9	1,0	2,0	5,0	-	0,8	6,6	7,4
29575/21	1 516,31	6,2	12,7	1,3	6,4	12,2	87,90	1,4	13,5	14,8
29349/21	1 520,26	9,0	16,4	1,1	7,3	16,0	84,15	1,2	16,4	17,5
32334/21	1 525,19	1,4	2,1	0,7	0,7	1,9	0,00	0,7	2,6	3,3
29583/21	1 526,05	7,8	15,0	1,4	7,2	14,0	46,77	1,5	15,7	17,1
32337/21	1 537,98	1,0	2,1	1,0	1,0	2,1	0,01	1,0	2,6	3,6
29355/21	1 538,87	0,8	0,9	0,7	0,1	0,1	-	0,9	0,5	1,4
29363/21	1 555,87	4,1	5,7	1,6	1,7	4,9	0,15	1,4	6,5	7,8
29365/21	1566,64	4,1	9,0	1,3	4,9	8,5	-	1,4	8,9	10,3
4891/22	1757,53	4,7	8,7	1,2	4,0	8,3	2,47	1,3	10,1	11,4
32840/21	1762,55	1,8	4,3	1,2	2,4	4,0	0,03	1,4	4,6	6,0
4899/22	1767,05	2,9	4,4	0,9	1,5	4,4	-	1,1	5,7	6,8
32842/21	1771,04	3,2	3,8	1,0	0,6	3,4	-	0,9	4,6	5,5
32846/21	1774,55	2,9	5,0	0,8	2,1	4,2	-	0,9	5,1	6,0
4901/22	1775,73	2,9	4,3	1,8	1,4	4,9	-	1,7	6,0	7,7
4911/22	1795,91	3,4	5,1	1,2	1,8	4,7	0,04	1,4	5,3	6,7

 R^2 = 0,82; 0,75; 0,81; 0,91; 0,92 для сопоставления составляющих пористости с общей пористостью по ЯМР после донасыщения керосином и с коэффициентами детерминации R^2 = 0,85; 0,81; 0,86; 0,84; 0,85 для сопоставления составляющих пористости с общей пористостью. Из рисунка 7 видно, что с увеличением общей пористости по ЯМР после донасыщения керосином и общей пористости растет объем порового пространства, а вместе с ним объем битумов и объем свободных пор, соотносящиеся к объему породы.

На рисунке 8 сопоставлены значения проницаемости по Клинкенбергу с различными составляющими пористости: пористостью, приходящейся на битумы, тяжелые фракции нефти, битумы и тяжелые фракции нефти, свободное поровое пространство, свободное поровое пространство и легкие фракции нефти. Наблюдается экспоненциальная зависимость для образцов с коэффициентами детерминации R^2 =0,90; 0,89; 0,91; 0,86; 0,87 соответственно. Из рисунка 8 видно, что с ростом объема битумов и объема свободных пор, соотносящихся к объему породы, увеличивается проницаемость.

Для расчета граничных отсечек времени T₂ использовали данные о содержании битумов, тяжелых фракций нефти и свободного порового пространства, полученные методом пиролиза, а также результаты определения количества воды, полученные экстракционнодистилляционным методом (табл. 2). Принцип определения граничных отсечек времени T₂ заключается в том, что количественное содержание битумов, тяжелых фракций нефти, воды и легких фракций нефти откладывают на оси «Кп (кумулятивный)», проводят прямую линию до пересечения с кумулятивной кривой (красная пунктирная линия) и опускают перпендикуляр на ось времени T₂. Полученное время T₂ и будет определяться в качестве граничной отсечки (рис. 9). Полученные результаты приведены в таблице 3.

Граничная отсечка битумов составила 0,2–3,9 мс (среднее 1,2 мс), отсечка битумов и тяжелых фракций нефти составила 0,3– 9,9 мс (среднее 3,2 мс) и отсечка битумов, тяжелых фракций нефти, воды и легких фракций нефти составила 0,3–383,6 мс (среднее 38,8 мс).

Рассчитанные граничные отсечки (индивидуальные и средние) времени Т₂ использованы для получения соответствующих значений пористости, относящейся к битумам и тяжелым неподвижным фракциям нефти, тяжелым подвижным фракциям нефти, свободному поровому пространству на кривых ЯМК (рис. 10). На рисунке 10 приведены три планшета для трех месторождений Восточной Сибири пласта Б1.

Как видно из рисунка 10 (трек 1 для планшетов), значения пористости, приходящейся

Рис. 7. Сопоставление различных составляющих пористости: а — пористость, приходящаяся на битумы; б — тяжелые фракции нефти; в — битумы и тяжелые фракции нефти; г — свободное поровое пространство; д — свободное поровое пространство и легкие фракции нефти

— — — с общей пористостью по ЯМР после донасыщения керосином на цилиндрических образцах

— — с общей пористостью на дробленых породах

Fig. 7. Comparison of different components of porosity: a - porosityattributable to bitumen; 6 - heavy oil fractions; a - bitumen and heavy oil fractions; a - free pore space; $\partial - free$ pore space and light oil fractions — — — with total porosity according to NMR after pre-saturation with

kerosene on cylindrical samples

— with total porosity on crushed rocks

Рис. 8. Сопоставление проницаемости по Клинкенбергу: с пористостью, приходящейся на битумы — а; тяжелые фракции нефти — б; битумы и тяжелые фракции нефти — в; свободное поровое пространство — г; свободное поровое пространство и легкие фракции нефти — д

Fig. 8. Comparison of permeability according to Klinkenberg: with porosity attributable to bitumen – a; heavy oil fractions – 6; bitumen and heavy oil fractions – 8; free pore space – 2; free pore space and light oil fractions – ∂

на свободное поровое пространство, рассчитанные с использованием средней граничной отсечки времени T_2 (38,8 мс) по данным ЯМК, и индивидуальных граничных отсечек времени T_2 по керновым данным, неплохо сопоставляются между собой. Аналогично значения пористости, приходящейся на битумы, битумы и тяжелые фракции нефти (треки 2 и 3 для планшетов), рассчитанные с использованием средней граничной отсечки времени T_2 по данным ЯМК (1,2 мс и 3,2 мс), и индивидуальных граничных отсечек времени T_2 по керновым данным, хорошо сопоставимы.

В данной работе проводились эксперименты по определению водородного индекса битумов. Для расчета ВИ битумов использовалась запатентованная технология ООО «ТННЦ» [7], основанная на регистрации изменения объема порового флюида методом ЯМР и газоволюметрическим методом до и после экстракции. Дробленая битумонасыщенная порода помещалась в датчик ЯМР-спектрометра и определялся объем битумов по ЯМР до экстракции. Затем дробленая порода помещалась в измерительный стакан гелиевого порозиметра и измерялся объем твердой фазы. После этого дробленая порода экстрагировалась последовательно в трех растворителях (хлороформ, вымачивание в керосине, смесь

Fig. 10. Geophysical plots with applied T_2 time boundary cutoffs for three East Siberian fields of the B1 reservoir

Табл. 2. Результаты количественного определения содержания битумов, тяжелых фракций нефти и свободного порового пространства комплексным способом

Tab. 2. Results of quantitative determination of bitumen content, heavy oil fractions and free pore space by complex method

Лаб. № образца	Глубина по ГИС, м	Проницаемость по Клинкенбергу, мД	Общая пористость по ЯМР (после донасыщения керосином), %	Кп (S2b), %	Kn (S2a), %	Kn (S2b + S2a), %	Kn (S1), %	Кп (вода), %	Кп (S2b + S2a + вода+S1), %	Kn FFI, %	Kn (FFI + S1), %
35302/21	1 459,24	0,011	4,47	0,14	0,11	0,25	0,10	0,95	1,30	3,17	3,27
35306/21	1 471,36	_	2,59	0,28	0,53	0,81	0,30	0,48	1,58	1,01	1,31
29555/21	1 490,87	0,02	2,04	0,07	0,02	0,09	0,01	0	0,10	1,94	1,96
29561/21	1 497,86	0,005	1,70	0,16	0,08	0,24	0,06	0,47	0,77	0,93	0,99
29567/21	1 509,63	0,921	8,05	0,66	0,30	0,96	0,24	0,23	1,43	6,62	6,86
29347/21	1 516,24	_	5,95	0,24	0,18	0,43	0,14	0,51	1,08	4,87	5,01
29575/21	1 516,31	87,905	12,68	1,20	1,03	2,22	0,65	0,24	3,12	9,57	10,22
29349/21	1 520,26	84,150	16,37	1,44	1,17	2,61	0,89	0,46	3,96	12,40	13,29
32334/21	1 525,19	0,00	2,05	0,27	0,16	0,43	0,11	0	0,54	1,51	1,62
29583/21	1 526,05	46,77	15,00	1,34	1,14	2,48	0,64	3,32	6,44	8,56	9,20
32337/21	1 537,98	0,01	2,05	0,15	0,03	0,18	0,02	0	0,20	1,85	1,87
29355/21	1 538,87	_	0,91	0,05	0,05	0,10	0,02	0,27	0,39	0,52	0,54
29363/21	1 555,87	0,147	5,71	0,71	0,53	1,24	0,42	0,95	2,61	3,10	3,52
29365/21	1 566,64	-	8,96	0,62	0,58	1,20	0,55	0,47	2,22	6,74	7,29
4891/22	1757,53	2,47	8,68	1,08	0,91	1,99	0,35	2,27	4,60	4,08	4,43
32840/21	1762,55	0,03	4,28	0,09	0,21	0,31	0,17	0	0,47	3,80	3,97
4899/22	1767,05	_	4,37	0,66	0,57	1,24	0,44	0,98	2,65	1,71	2,15
32842/21	1771,04	_	3,81	0,65	0,29	0,94	0,27	0,23	1,43	2,38	2,65
32846/21	1774,55	-	5,00	0,52	0,55	1,07	0,36	0	1,43	3,57	3,93
4901/22	1775,73	_	4,33	0,61	0,63	1,24	0,19	1,48	2,91	1,42	1,61
4911/22	1795,91	0,04	5,13	0,32	0,32	0,64	0,28	0	0,91	4,22	4,49

хлороформа и ксилола в соотношении 1:1) для максимально возможной очистки от битумов и высушивалась при температуре 105 °C до постоянной массы. Определялся сигнал ЯМР от сухой экстрагированной дробленой породы, а также объем твердой фазы в гелиевом порозиметре. Водородный индекс битумов рассчитывался по формуле:

$$BH_{\tilde{o}um} = \frac{V_{\mathcal{R}MP nocxe uµad.экстр.} - V_{\mathcal{R}MP nocxe nozu.экстр.}}{V_{ms.\phi.nocxe uµad.экстр.} - V_{ms.\phi.nocxe nozu.экстр.}}$$
(5)

где V_{SMP} после щад. экстр. — объем битумов по SMP после щадящей экстракции, см³; V_{SMP} после полн. экстрр. — сигнал SMP от сухой экстрагированной породы в единицах объема, см³; $V_{ms.\phi. после щад. экстр.}$ — объем твердой фазы после щадящей экстракции, см³; $V_{ms.\phi. после полн. экстрр.}$ — объем твердой фазы после полной экстракции, см³ (табл. 4).

Для практических задач интерпретации ГИС рекомендуется использовать значение водородного индекса битумов, равное 0,789 д.е.

Рекомендации

- Необходимо увеличить статистику количественного определения битумов комплексным способом для внесения поправки при подсчете запасов подвижных углеводородов коллекторов Восточной Сибири.
- 2. Для уточнения граничных отсечек

Табл. 3. Результаты определения граничных отсечек времени ${\rm T_2}$ Tab. 3. Results of determination of boundary time cutoffs ${\rm T_2}$

времени T₂ необходимо обеспечивать максимальное подобие насыщения флюидами образцов керна как в зоне исследований ЯМК (использование нефти и фильтрата бурового раствора в случае его проникновения в породу).

 Для корректного расчета водородного индекса битумов рекомендуется увеличить статистику исследуемых образцов пород Восточной Сибири и использовать образцы с высоким содержанием битумов.

Итоги

Разработанная методика оценки содержания битума в поровом пространстве пород коллекторов Восточной Сибири на основе комплексного анализа лабораторных исследований керна позволила оценить объем пор, занятый битумом, и оценить его содержание по разрезу. Определены граничные отсечки, позволяющие оценить долю пор. занятую тем или иным флюидом. Получено неплохое сопоставление пористости, приходящейся на свободное поровое пространство, а также пористости, приходящейся на битумы и тяжелые фракции нефти, по керновым данным и по данным ЯМК. Описаны эксперименты по определению водородного индекса битумов и предложено значение водородного индекса, рекомендованного для практических задач интерпретации ГИС.

Выводы

- Предложен комплексный способ количественного определения битумов коллекторов Восточной Сибири, основанный на использовании методов газоволюметрии, ЯМР и пиролиза.
- Для исследованной коллекции образцов построены зависимости пористостьпористость и пористость-проницаемость с высоким коэффициентом детерминации. Рассчитано количественное содержание битумов комплексным способом.
- Рассчитаны граничные отсечки времени Т₂, отделяющие битумы, тяжелые нефти и свободное поровое пространство. Средняя отсечка битумов составила 1,2 мс, средняя отсечка битумов и тяжелых фракций нефти составила 3,2 мс, средняя отсечка битумов, тяжелых фракций нефти и воды составила 38,8 мс.
- Полученные граничные отсечки времени T₂ применены на кривых ЯМК. Получено неплохое сопоставление пористости, приходящейся на свободное поровое пространство, а также пористости, приходящейся на битумы и тяжелые фракции нефти, по керновым данным и по данным ЯМК.
- Для практических задач интерпретации ГИС рекомендуется использовать значение водородного индекса битумов, равное 0,789 д.е.

№ n/n	Лаб. № образца	Глубина по ГИС, м	Проницаемость по Клинкенбергу, мД	Общая пористость по ЯМР (после донасыщения керосином), %	Kn (S2b), %	Kn (S2b + S2a), %	Кп (S2b + S2a + вода+S1), %	Kn FFI, %	Граничная отсечка битумов, мс	Граничная отсечка битумов и тяжелых фракций нефти, мс	Граничная отсечка битумов, тяжелых фракций нефти, воды и легких фракций нефти, мс
1	35302/21	1 459,24	0,011	4,47	0,14	0,25	1,30	3,17	0,7	1,2	16,9
2	35306/21	1 471,36	-	2,59	0,28	0,81	1,58	1,01	1,0	9,9	30,5
3	29555/21	1 490,87	0,02	2,04	0,07	0,09	0,10	1,94	0,2	0,3	0,3
4	29561/21	1 497,86	0,005	1,70	0,16	0,24	0,77	0,93	1,2	1,8	12,0
5	29567/21	1 509,63	0,921	8,05	0,66	0,96	1,43	6,62	1,3	2,2	3,8
6	29347/21	1 516,24	-	5,95	0,24	0,43	1,08	4,87	0,9	1,3	3,0
7	29575/21	1 516,31	87,905	12,68	1,20	2,22	3,12	9,57	1,7	3,9	6,6
8	29349/21	1 520,26	84,150	16,37	1,44	2,61	3,96	12,40	0,6	1,1	1,9
9	32334/21	1 525,19	0,00	2,05	0,27	0,43	0,54	1,51	0,8	1,9	3,1
10	29583/21	1 526,05	46,77	15,00	1,34	2,48	6,44	8,56	1,0	3,4	38,0
11	32337/21	1 537,98	0,01	2,05	0,15	0,18	0,20	1,85	3,9	4,6	5,0
12	29355/21	1 538,87	-	0,91	0,05	0,10	0,39	0,52	0,5	0,9	9,5
13	29363/21	1 555,87	0,147	5,71	0,71	1,24	2,61	3,10	0,9	2,4	16,6
14	29365/21	1566,64	-	8,96	0,62	1,20	2,22	6,74	0,6	1,3	4,8
15	4891/22	1757,53	2,47	8,68	1,08	1,99	4,60	4,08	3,4	9,8	383,6
16	32840/21	1762,55	0,03	4,28	0,09	0,31	0,47	3,80	0,7	4,5	8,4
17	4899/22	1767,05	_	4,37	0,66	1,24	2,65	1,71	1,5	5,7	51,6
18	32842/21	1771,04	-	3,81	0,65	0,94	1,43	2,38	0,6	1,1	2,7
19	32846/21	1774,55	-	5,00	0,52	1,07	1,43	3,57	0,9	2,7	4,9
20	4901/22	1775,73	-	4,33	0,61	1,24	2,91	1,42	3,5	8,2	216,0
21	4911/22	1795,91	0,04	5,13	0,32	0,64	0,91	4,22	0,8	1,7	2,7

Табл. 4. Результаты определения водородного индекса битумов пород пласта Б1 Tab. 4. Results of determination of hydrogen index of bitumens of B1 formation rocks

Лаб. №	Глубина	После щадящей экстракции	1	После полной экстракц	Водородный индекс	
образца	по ГИС, м	Объем твердой фазы, см ³	Объем флюида, см ³	Объем твердой фазы, см ³	Объем флюида, см ³	(ВИ), д.е.
4891/22	1757,53	8,470	0,132	8,459	0,123	0,789

	 Литература Абдуллин Т.Р. Исследование неоднородности распределения вязкости тяжелой нефти по залежи методом ядерно-магнитного резонанса (на примере месторождений тяжелой нефти Республики Татарстан). Диссертация. 25.00.17. Бугульма: ТатНИПИнефть, 2017. 100 с. Битумы. Большая российская энциклопедия. М.: 2004–2017. Джафаров И.С., Сынгаевский П.Е., Хафизов С.Ф. Применение метода ядерного магнитного резонанса для 	4.	характеристики состава и распределения пластовых флюидов. М.: Химия, 2002. 439 с. Марков В.В., Заночуев С.А., Рязанова Т.А. Способ выделения битумонасыщенных интервалов в карбонатных породах на основе результатов пиролитического исследования // Геология, геофизика и разработка нефтяных и газовых месторождений. 2022. № 5. С. 32–36. Гильманов Я.И., Саломатин Е.Н., Николаев М.Ю. Опыт ТННЦ по изучению керна методом ЯМР // Научно-технический вестник ОАО «НК «РОСНЕФТЬ». 2014. № 3. С. 22–25.	6.	Загидуллин М.И., Гильманов Я.И., Кукарский М.С. Способ определения общей пористости естественно- насыщенных образцов горных пород с использованием метода ЯМР // Патент № 2780988 от 04.10.2022. Потапов А.Г., Загидуллин М.И. Способ определения эффективного водородного индекса флюидов полностью или частично насыщающих поровое пространство естественно-насыщенных образцов горных пород // Патент № 2748894 от 01.06.2021.
--	---	----	---	----	--

ENGLISH

Results

The developed methodology for estimating the bitumen content in the pore space of reservoir rocks in Eastern Siberia based on a comprehensive analysis of laboratory core studies allowed us to estimate the volume of pores occupied by bitumen and to estimate its content along the section. Boundary cutoffs were determined, which allow estimating the fraction of pores occupied by this or that fluid. A good comparison of porosity attributable to free pore space and porosity attributable to bitumen and heavy oil fractions from core data and NMR logging data is obtained. Experiments to determine the hydrogen index of bitumen are described and the value of hydrogen index recommended for practical tasks of methods of geophysical well studies interpretation is proposed.

Conclusions

 A complex method of quantitative determination of bitumen of East Siberian reservoirs based on the use of gas-volumetric, NMR and pyrolysis methods is proposed.

References

- 1. Abdullin T.R. Research of heterogeneity of heavy oil viscosity distribution over the deposit by nuclear magnetic resonance method (by the example of heavy oil fields of the Republic of Tatarstan). Dissertation, 25.00.17, Bugulma: TatNIPIneft, 2017, 100 p. (In Russ).
- 2. Bitumens. Big Russian Encyclopedia, in 35 vol. Moscow: 2004–2017. (In Russ).
- 3. Jafarov I.S., Syngaevsky P.E., Khafizov S.F. Application of nuclear magnetic resonance

- Porosity-porosity and porosity-permeability dependences with high coefficient of determination were constructed for the studied sample collection. The quantitative bitumen content was calculated by the complex method.
- The boundary time cutoffs T₂ separating bitumen, heavy oil and free pore space were calculated. The average cutoff of bitumen was 1,2 ms, the average cutoff of bitumen and heavy oil fraction was 3,2 ms, and the average cutoff of bitumen, heavy oil and water fraction was 38,8 ms.
- The obtained T₂ time boundary cutoffs were applied to the NMR logging curves. A good comparison of porosity attributable to free pore space and porosity attributable to bitumen and heavy oil fractions from core data and NMR logging data was obtained.
- For practical tasks of methods of geophysical well studies interpretation it is recommended to use the value of bitumen hydrogen index equal to 0,789 d.u.

of OAO NK ROSNEFT, 2014, Vol. 3, P. 22–25. (In Russ).

- Zagidullin M.I., Gilmanov Ya.I., Kukarsky M.S. Method for determining the total porosity of naturally saturated rock samples using NMR method. Patent Vol. 2780988 from 04.10.2022. (In Russ).
- Potapov A.G., Zagidullin M.I. Method for determining the effective hydrogen index of fluids fully or partially saturating the pore space of naturally saturated rock samples. Patent Vol. 2748894 from 01.06.2021. (In Russ).

ИНФОРМАЦИЯ ОБ АВТОРАХ І INFORMATION ABOUT THE AUTHORS

method for characterization of composition

Moscow: Khimiya, 2002, 439 p. (In Russ).

4. Markov V.V., Zanochuev S.A., Ryazanova T.A.

on the results of pyrolytic study. Geology,

fields, 2022, issue 5, P. 32-36. (In Russ).

5. Gilmanov Ya.I., Salomatin E.N., Nikolaev M.Yu.

method. Scientific and Technical Bulletin

geophysics and development of oil and gas

and distribution of formation fluids.

Method of separation of bituminous

intervals in carbonate rocks based

Tyumen petroleum research center

experience in studying core by NMR

Загидуллин Максим Ильварович, главный специалист отдела петрофизических исследований керна управления лабораторных исследований, ООО «Тюменский нефтяной научный центр», Тюмень, Россия

Для контактов: mizagidullin2@tnnc.rosneft.ru

Потапов Артём Геннадьевич, заведующий лабораторией отдела петрофизических исследований керна управления лабораторных исследований, ООО «Тюменский нефтяной научный центр», Тюмень, Россия

Гарипова Карина Фауадисовна, специалист отдела петрофизических исследований керна управления лабораторных исследований, ООО «Тюменский нефтяной научный центр», Тюмень, Россия Zagidullin Maxim Ilvarovich, chief specialist, department of petrophysical core research, laboratory research department, "Tyumen petroleum research center" LLC, Tyumen, Russia

Corresponding author: mizagidullin2@tnnc.rosneft.ru

Potapov Artem Gennadyevich, head of laboratory, department of petrophysical core research, laboratory research department, "Tyumen petroleum research center" LLC, Tyumen, Russia

Garipova Karina Fauadisovna, specialist, department of petrophysical core research, laboratory research department, "Tyumen petroleum research center" LLC, Tyumen, Russia